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Abstract Adherence is a frequent contributing factor to

variations in drug concentrations and efficacy. The purpose

of this work was to develop an integrated population model

to describe variation in adherence, dose-timing deviations,

overdosing and persistence to dosing regimens. The hybrid

Markov chain–von Mises method for modeling adherence

in individual subjects was extended to the population setting

using a Bayesian approach. Four integrated population

models for overall adherence, the two-state Markov chain

transition parameters, dose-timing deviations, overdosing

and persistence were formulated and critically compared.

The Markov chain–Monte Carlo algorithm was used for

identifying distribution parameters and for simulations. The

model was challenged with medication event monitoring

system data for 207 hypertension patients. The four Baye-

sian models demonstrated good mixing and convergence

characteristics. The distributions of adherence, dose-timing

deviations, overdosing and persistence were markedly non-

normal and diverse. The models varied in complexity and

the method used to incorporate inter-dependence with the

preceding dose in the two-state Markov chain. The model

that incorporated a cooperativity term for inter-dependence

and a hyperbolic parameterization of the transition matrix

probabilities was identified as the preferred model over the

alternatives. The simulated probability densities from the

model satisfactorily fit the observed probability distribu-

tions of adherence, dose-timing deviations, overdosing and

persistence parameters in the sample patients. The model

also adequately described the median and observed quar-

tiles for these parameters. The Bayesian model for adher-

ence provides a parsimonious, yet integrated, description of

adherence in populations. It may find potential applications

in clinical trial simulations and pharmacokinetic-pharma-

codynamic modeling.

Keywords Adherence � Compliance � Dosing patterns �
Runs � Circular distribution

Introduction

Lack of patient adherence to prescribed dosing regimens is

a potentially preventable contributing factor in numerous

hospitalizations and emergency room visits [1]. Incorpo-

rating good models for patient adherence in pharmacoki-

netics and pharmacodynamics (PK–PD) models could

enhance clinical trial simulations.

Dr. Gerhard Levy conducted several early seminal

investigations into patient adherence using PK–PD princi-

ples that have proven elegant and insightful [2, 3]. His

work highlighted the impact that patient-specific and drug-

specific characteristics have on plasma drug concentration

and drug efficacy when doses are missed. He advocated for

simulations to determine whether missed doses would

cause plasma concentrations to drop below the therapeutic

range for drugs with known concentration-effect relation-

ships [2, 3]. Subsequent research applied these concepts to

integrate adherence data from electronic medication event

monitoring systems (MEMS) technology to PK [4] and

population PK and PD modeling [5, 6].
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Dr. Levy’s work on patient compliance explains the

relationship between a drug’s PK/PD properties and the

consequences of missing one or several doses of that drug.

For example, a drug with a shallow effect versus concen-

tration slope and a long half-life would be less affected by a

missed dose, and could be considered a ‘‘forgiving’’ drug

[2]. He introduced the concept of the medication noncom-

pliance impact factor; a ratio used to determine how much of

an impact a missed dose would have on plasma concentra-

tion. Larger noncompliance impact factors indicate that a

missed dose will have a more pronounced effect [2].

Although it is understood that less frequent dosing is asso-

ciated with improved adherence to the dosing regimen, this

alone does not make for a better drug. With more frequent

dosing there is less concern for sub-therapeutic plasma

concentrations, a more relevant measure of noncompliance,

following a single missed dose. This leads to the conclusion

that adjustments to dosing regimens can be useful in

reducing the risk for sub-therapeutic concentration levels

following a missed dose [2, 3]. The ‘‘forgiving drug’’ con-

cept has become more relevant and applicable for clinical

trial design in the personalized medicine era, because it can

help inform the need for adherence monitoring [1]. In

clinical trials, poor adherence not only undermines the

power to detect drug efficacy, but also the ability to detect

adverse events. The adverse consequences of poor patient

adherence can be mitigated with the use of ‘‘forgiving

drugs’’ [1]. Additionally, adherence data has been integrated

with pharmacogenetic outcomes in a clinical trial setting [7].

In clinical trial and practice settings, patient adherence

data can be obtained using several methods including

patient-reported adherence, the use of medication possession

ratios within e-prescribing systems, and from MEMS.

MEMS technology provides the most detailed information

of individual dosing events as it provides a time stamp at

which medication container openings occur. MEMS moni-

toring is considered a gold standard for obtaining objective

surrogate measures of dosing events. However, there is an

inherent assumption that medication opening results in

medication administration. The information from MEMS

devices has been previously used to conduct simulations of

drug concentrations and efficacy [8, 9]. In our recent work,

dosing failures and successes were modeled using a two-

state Markov chain, a von Mises (VM) distribution was used

to model dose-timing deviations, a Weibull distribution was

used to model persistence, and a Poisson distribution was

used to model the frequency in which an overdose would

occur. Additionally, we introduced the patient cooperativity

index (PCI) an odds ratio calculated using the parameters

from the Markov chain that can be used to describe the

variations in dosing patterns between two patients with the

same level of overall adherence. The goal of this research is

to use Bayesian Markov chain–Monte Carlo (MCMC)

techniques to extend our previous model for use in popu-

lation modeling.

Methods

Adherence data sets

The data used for model assessment were the observed

dosing regimens for 207 patients on once-daily hyperten-

sion treatment. Data on dose-timing, number of dose units

taken for each dose, and dosing intervals were extracted

from the Pharmionic Knowledge Center (PKC) database

(http://www.iadherence.org/www/pkc.adx), a compilation

of electronically monitored events that serve as an objec-

tive surrogate for a patient’s dosing history.

Dosing and persistence data for each patient were

obtained from the calendar plots. The dosing interval data

was extracted from the dosing time graphs [10].

Modeling individual dosing profiles

The hybrid Markov chain–VM model described in detail in

[10] was used. The key features of this model are described

below. The individual model consisted of four inter-de-

pendent components:

1. A two-state Markov chain was used to model the

occurrence of dosing failures and dosing successes.

2. The dose-timing deviations were modeled with a VM

distribution.

3. Persistence was modeled with a Weibull distribution.

4. The frequency of overdosing events was modeled with a

Poisson distribution. The time between overdosing events

was exponentially distributed as a direct consequence of

the Poisson model for overdosing event frequency.

Modeling the two-state Markov chain

Individual level model

We modeled the short-range dependence of dosing using a

two-state time-homogeneous Markov chain with transition

matrix A:

A ¼ S

F

pSS pSF
pFS pFF

� �
¼ S

F

pSS 1 � pSS
pFS 1 � pFS

� �

The probability of a success followed by a success at the

next dosing event was denoted by pSS and the probability of

a failure followed by a success at the next dosing event was

denoted by pFS.

Maximum-likelihood estimates [11] of pSS and pFS were

obtained from NSS, NFS, NFF and NSF , the frequencies of
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success followed by success, failure followed by success,

failure followed by failure and success followed by failure

events, respectively, using:

bpSS ¼ NSS

NSS þ NSF

bpFS ¼ NFS

NFS þ NFF

The PCI was defined as:

PCI ¼ pFS

1 � pFS

� ��
pSS

1 � pSS

� �

The PCI represents an odds ratio of the odds of a failure

followed by a success, to the odds of a success followed by

a success. Patients with low PCI values are less likely to

take a dose following an omission, whereas those with high

PCI values are more likely to take a dose following an

omission.

Bayesian population modeling

Four alternative approaches were compared for modeling

the two-state Markov chain component of the model. The

dose-timing deviation, overdosing and persistence com-

ponents of all four models were identical.

The count matrix, Ni, which contains: NSS ið Þ, the count of
successes that are followed by successes in subject i; NSF ið Þ,
the count of successes that are followed by failures, NFS ið Þ,
the count of failures that are followed by successes; and

NFF ið Þ, the count of failures that are followed by failures:

Ni ¼ NSSðiÞ NSFðiÞ
NFSðiÞ NFFðiÞ

� �

Let NSumðiÞ ¼ NSS ið Þ þ NSF ið Þ þ NFS ið Þ þ NFFðiÞ.
The relative frequency matrix, Qi contains the relative

frequencies corresponding to the cells of the count matrix

Ni.

Qi � Ni

NSum ið Þ ¼ qSSðiÞ qSFðiÞ
qFSðiÞ qFFðiÞ

� �

The transition matrix Ai used for defining the Markov

chain, is generated by normalizing each entry of Ni to the

appropriate row counts, such that:

Ai ¼ S

F

pSSðiÞ pSFðiÞ
pFSðiÞ pFFðiÞ

� �
¼ S

F

pSSðiÞ 1 � pSSðiÞ
pFSðiÞ 1 � pFSðiÞ

� �

Model 1, Dirichlet prior

For Model 1, the counts of NSS ið Þ, NSF ið Þ, NFS ið Þ, and

NFF ið Þ in Ni were modeled using a multinomial

distribution:

Ni � Multinomial ðQi; NSumðiÞÞ
Qi � Dirichlet ðaÞ

The counts NSS i½ �, NSF i½ �, NFS i½ � and NFF i½ � were viewed

in this model as resulting from the trials of a categorical

event with four possible outcomes. The Dirichlet is a

vector distribution of probabilities that sum to unity. In this

case, the Dirichlet vector is of order 4.

Model 2, independent beta priors for each row

NFF ½i� was modeled using a binomial distribution that was

a function of pFF½i�, the probability of a failure following a

failure and the total number of failures

NF i½ � ¼ NFS i½ � þ NFF i½ �. NFS½i� and NSF½i� were modeled

analogously.

NFF ½i� � Binomial pFF½i�; NF½i�ð Þ
NFS½i� � Binomial 1 � pFF½i�; NF ½i�ð Þ
NSF½i� � Binomial pSF i½ �; NS½i�ð Þ

The value of NSS½i� was obtained by difference since:

NSum i½ � ¼ NTotal i½ � � 1

¼ NFF i½ � þ NFS i½ � þ NSF i½ � þ NSS i½ �

The individual rows of the transition matrix were

modeled with Beta distributions.

pFF½i� � Beta aFF; bFFð Þ
pSF½i� � Beta aSF ; bSFð Þ

The values of the two remaining elements of the tran-

sition matrix were obtained by difference:

pFS i½ � ¼ 1 � pFF½i�
pSS i½ � ¼ 1 � pSF ½i�

Model 3, inter-dependent beta priors

In Model 3, the counts NFF½i�, NSF½i�, NFS½i� were modeled

with binomial distributions as in Model 2.

However, the transition matrix was modeled with an

alternative re-parameterization adapted from a strategy for

dependent discrete Markov chains proposed by Devore

[12], Rudolfer [13] and Islam and O’Shaughnessy [14].

The elements of the transition matrix for subject i were

parameterized using the overall adherence pS ið Þ, first-order
auto-correlation term, r i½ �.

Ai ¼ pS ið Þ þ pF ið ÞrðiÞ pF ið Þ � pF ið ÞrðiÞ
pS ið Þ � pS ið ÞrðiÞ pF ið Þ þ pS ið ÞrðiÞ

� �

We reasoned that this re-parameterization would be

better equipped to model transitions matrices where the

J Pharmacokinet Pharmacodyn (2015) 42:515–525 517

123

Author's personal copy



row probabilities were dependent. In Model 3, there are

two parameters, pS ið Þ and rðiÞ, subject to the constraints:

pF ið Þ ¼ 1 � pS ið Þ and �1 � rðiÞ � 1.

The overall adherence pS ið Þ can range from 0 to 1 and

the correlation term �1 � rðiÞ � 1. The priors for

parameters, pS ið Þ and rðiÞ were both Beta distributions but

with support ½0; 1� and ½�1; 1�, respectively.
pSðiÞ � Beta aP; bPð Þ

r ið Þ � Beta ar; brð Þ over ½�1; 1�.

Model 4, helix-coil model

The parameterization of this model consisted of hyperbolic

functions of two parameters, s ið Þ and rðiÞ, that underlie for
the helix-coil transition model in polymer physics. Previ-

ous work from our group had demonstrated promise of this

approach for adherence modeling [15].

Ai ¼

s ið Þ
1 þ s ið Þ

1

1 þ s ið Þ
rðiÞs ið Þ

1 þ rðiÞs ið Þ
1

1 þ rðiÞs ið Þ

2
664

3
775

The priors for s ið Þ and rðiÞ were:

s ið Þ ¼ ezðiÞ

z ið Þ � Normalðas; bsÞ
rðiÞ � Gammaðar; brÞ

The zðiÞ is an intermediate dummy variable and bs repre-

sents the precision of the normal distribution.

Dose-timing deviation distribution

The dose-timing deviation of the ith dose, di, was defined
as the difference between the actual dosing time and the

nearest prescribed dosing time.

Individual level model

We assume that the PDF of the dose-timing deviations d
after transformation to angular coordinates is distributed

according to the VM PDF function VM l; jð Þ:

2p
d
s

� VM w; xð Þ

The VM distribution describes angular random variables

and its PDF p hð Þ at angular position h radians is:

p hð Þ ¼ ejcos h�wð Þ

2pI0 xð Þ for w � p � h � w þ p

The wðiÞ is the mean and xðiÞ is a measure of how con-

centrated the dose-timing deviation angles are around the

mean; Io is the Bessel function of order zero.

The R circular statistics package [16] was used to obtain

maximum likelihood estimates for w and x, the mean and

concentration parameters for the VM distribution of dose-

timing deviation angles for each subject.

Bayesian population modeling

The prior for the VM location parameter wðiÞ was a VM

distribution. Both a gamma prior and log-normal prior were

investigated for modeling the VM concentration parameter.

In pilot experiments, the log-normal distribution provided a

better fit. Therefore, the prior for the VM concentration

parameter jðiÞ was assumed to follow a log-normal

distribution.

wðiÞ � vonMisesðaw; bwÞ

xðiÞ � LogNormalðax; bxÞ

The ax and bx represent the mean and precision of the

log-normal prior, respectively.

Modeling overdosing events

Individual level model

The distribution of over-dosing events was modeled with a

Poisson distribution. Maximum-likelihood estimation was

used to calculate Poisson rate parameter kðiÞ. The over-

dosing fraction (OF) was defined as the fraction of dosing

events in which the patient was taking more doses than

prescribed ([1 each day).

Bayesian population modeling

Both gamma and exponential priors were evaluated for k,
the rate parameter of the overdosing distribution. From

exploratory probability–probability plots, it was apparent

that the exponential distribution provided a better and

more parsimonious fit to the data distribution. The

exponential distribution was selected for the subsequent

experiments.

kðiÞ � ExponentialðakÞ:

Long-term persistence

Individual level model

Persistence was defined as the period from the date of the

first successful dosing event to the last successful dosing

event. For once-daily dosing, NTotal i½ �, the total number of

observed dosing events is equivalent to the persistence of

subject i.
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Persistence is a time-to-event variable and has to be

handled in a manner that appropriately addresses censored

data. As noted in our previous report, there were three sub-

groups in the PKC adherence dataset. Two sub-groups had

a 6-month observation period but disparate overall adher-

ence values of 68.5 and 92.8 %, respectively. The third

sub-group was followed up for 9-months and had 92.5 %

adherence. The three groups were simultaneously modeled

with appropriate censoring time. Subjects whose persis-

tence values were ±2 days of (6 or 9-month) their

respective sub-groups observation period were considered

censored. The dinterval function in RJAGS, which creates

indicator variable from the observed times and the cen-

soring time (observation period) as inputs was used.

Bayesian population modeling

The persistence NTotal i½ � was modeled using a Weibull

distribution with shape parameter t and scale parameter j:

NTotal½i� � Weibull t; jð Þ

The Weibull density with the accelerated life parame-

terization for a random variable x is defined as:

Weibull t; jð Þ ¼ tjxt�1e�jxt

The Weibull distribution has to be reparameterized for

MCMC modeling because t, the Weibull shape parameter,

shows poor mixing (http://sourceforge.net/p/mcmc-jags/

discussion/610036/thread/d5249e71/) [17]:

j ¼ 1

.t

n ¼ e.

The full re-parameterization was

Weibull t; .ð Þ ¼ t
.

x

.

� �t�1

e� x=.ð Þt

We refer to n as the log-scale parameter. A gamma

distribution was used as the prior for t, the shape parameter

whereas a normal distribution was used as the prior for n.

t � Gammaðat; btÞ
n � Normalðan; bnÞ

Markov chain–Monte Carlo implementation

Mathematica (Wolfram Research, Champaign, IL) was

used for estimating individual level parameters. Both SPSS

(IBM, Armonk, NY) and the R statistics program were

used for exploratory statistical analyses [16, 18].

Bayesian analysis was conducted using the well-estab-

lished MCMC method in RJAGS software [19, 20]. To

allow the MCMC chains to converge we employed a

conservative burn-in phase of 50,000 runs before evaluat-

ing any statistics. The MCMC algorithm was implemented

for three chains each with 200,000 runs and thinning

interval of 2.

Uninformative conjugate priors were used for the hyper-

parameter distributions for which closed forms were

available. Uninformative closed form priors with compat-

ible support were identified from numerical experiments

for a subset of hyper-parameters lacking closed form

conjugate priors.

The MCMC runs were analyzed with the convergence

diagnosis and output analysis (CODA) package [20]. Add-

on code for analyzing the VM distribution in RJAGS was

developed by Colin Stoneking and Klaus Oberauer

(Department of Cognitive Psychology, University of Zur-

ich, Switzerland).

Convergence and mixing were assessed using multiple

approaches. First, visual inspection of parameter trace plots

was conducted for evidence of poor mixing. The Gelman–

Rubin–Brooks plot, which shows the evolution of Gelman

and Rubin’s shrink factor as the number of iterations

increases [21], and the Gelman and Rubin multiple

sequence diagnostic multivariate scale reduction factor

were also examined [21–23]. The Gelman–Rubin statistic

was less than 1.05 [21, 23].

The two-state Markov chain Models 1–4 were compared

using the deviance information criterion (DIC) [24] as

computed in CODA [24, 25]:

DIC ¼ D þ pD

where D is the mean deviance and pD is the effective

number of parameters.

For visual predictive checks, the empirical density

functions were computed using the ‘‘density’’ function in R

with default settings. The density plots from RJAG simu-

lations were compared to the empirical density functions.

The empirical density functions were truncated outside of

support to enable meaningful direct comparison with the

corresponding simulated density function. Raw histograms

were visually overlaid on the simulations and densities to

provide a visual reference.

The Bayesian analyses were conducted on a MacBook

Pro laptop computer running the OS X Yosemite operating

system version 10.10.3.
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Results

The distribution of the model parameters for the 207 sub-

jects on the once-daily treatment for hypertension are

summarized in Fig. 1 and Table 1. The majority of the

parameters in the hybrid Markov chain–VM model were

markedly non-normal as evidenced by the skewness values

and the histogram profiles. This provided the motivation to

investigate MCMC methods for population modeling.

Visual examination of the iteration trace plots did not

identify evidence for poor mixing of the chains for any of

the parameters in each of the models. The Gelman–Rubin–

Brooks plots for all of the parameters in each of the

parameters converged to values less than 1.05 and the

Gelman and Rubin multivariate potential scale reduction

factors approached unity.

Table 2 compares the DIC of the four competing models

for the two-state Markov chain component of the adher-

ence model. The DIC is an extension of model selection

criteria such as the Akaike information criterion (AIC) that

is suitable for MCMC methods [22, 24]. Lower values of

deviance indicate a more parsimonious model. The rank
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Fig. 1 Histograms for key

adherence variables and model

parameters of the hybrid

Markov chain–von Mises model

at the individual level. The

histograms in a–d show overall

adherence fraction, pSS, pFS and

PCI, respectively, which are the

key variables and derived

parameters of the two-state

Markov model. The histogram

in e shows the apparent

persistence values. The values

are not corrected for censoring.

The histograms in f and g show

the fraction of overdosing

events and the Poisson rate

parameter for overdosing. The

histograms in h and i show the

mean and concentration

parameters of the von Mises

distribution for dose timing

deviations
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order of the DIC values was Model 1[Model 3[Model

2[Model 4. Thus Model 4 represents the preferred

model. We surmise that Model 4 builds in inter-depen-

dence across rows of the two-state Markov chain transition

matrix, which could provide greater flexibility for model-

ing adherence data sets.

The distribution of the hyper-parameters for the dose-

timing deviation, overdosing and persistence components

of the adherence model were very similar across Models 1

through Model 4. This is not surprising given that these

particular components are only weakly dependent on the

two-state Markov chain component. Table 3 summarizes

the distribution of the hyper-parameters for dose-timing

deviation, overdosing and persistence components from

Model 4.

Table 4 summarizes the distribution of the hyper-pa-

rameters for the two-state Markov chain components for

Models 1–4. The two-state Markov chain parameter esti-

mates for Model 1 showed large standard deviations rela-

tive to the mean as assessed by the coefficient of variation

(CV) compared to two-state Markov chain parameter

estimates for the other models. Because Model 1 was

markedly inferior to the other models we did not pursue

refinements to hyper-parameter distribution assumptions of

Model 1. The CV values of hyper-parameter distribution

for the other models were satisfactory—majority were

\15 % and all were\25 %.

We conducted the equivalent of a visual predictive

check by conducting simulations in RJAGS for several

observed variables and parameters in Fig. 1. Figure 2

summarizes the results. The dashed green line represents

the results from the Bayesian simulations based on Model

4 and the red line represents the empirical density function

for the variable. The histograms from Fig. 1 are provided

as an approximate visual reference. Figure 2 demonstrates

that Model 4 and the modeling strategies for the dose

timing deviations and overdosing components are satis-

factorily fit data. Figure 3 plots the observed and predicted

quartile values from Model 4 for overall adherence frac-

tion, pSS, pFS, the fraction of overdosing events, the Pois-

son rate parameter for overdosing, and the mean and

concentration parameters of the VM distribution for dose

timing deviations. The proximity of the values to the 45�
line of equality provides additional evidence in support of

Model 4.T
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g Table 2 Deviance information

criterion (DIC) for the four

competing two-state Markov

chain models

Model DIC

Model 1 13385

Model 2 2433

Model 3 2487

Model 4 2405
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Discussion

In this research, we conducted Bayesian population analyses

of a hybrid Markov chain–VM model for analyzing adher-

ence data using the MCMC method. The Bayesian model

satisfactorily described the distribution of adherence, dose-

timing deviations, overdosing and persistence in the data set

of 207 patients on once-daily hypertension treatment.

Linear and non-linear mixed effect modeling methods

are widely used for population modeling in

Table 3 Mean, standard deviations and credibility intervals for the hyper-parameters of the dose-timing deviation, overdosing and persistence

components of the adherence model

Component Hyper-parameter Prior Mean SD CV % SEM 2.5 % 25 % 50 % 75 % 97.5 %

Dose timing aw von Mises 2.86 0.0764 2.7 1.48 9 10-4 2.71 2.81 2.86 2.91 3.01

Dose timing bw von Mises 1.44 0.137 9.5 2.66 9 10-4 1.18 1.35 1.44 1.53 1.72

Dose timing ax Log normal -1.73 0.0583 3.4 1.12 9 10-4 -1.84 -1.77 -1.73 -1.69 -1.61

Dose timing bx Log normal 1.43 0.140 9.9 2.55 9 10-4 1.16 1.33 1.42 1.52 1.71

Persistence t Gamma 2.56 0.217 8.5 1.23 9 10-3 2.15 2.41 2.55 2.70 2.99

Persistence n Normal 5.53 0.0555 1.0 3.44 9 10-4 5.43 5.49 5.53 5.57 5.65

Overdosing ak Exponential 9.04 0.628 6.9 1.15 9 10-3 7.85 8.61 9.03 9.46 10.3

The estimates from Model 4 are shown

CV % coefficient of variation of parameter estimate as a percentage, SEM standard error of the mean adjusted for autocorrelation

Table 4 Mean, standard deviations and credibility intervals for the hyper-parameters of the two-state Markov chain parameters for Models 1–4

Prior Mean SD CV % SEM 2.5 % 25 % 50 % 75 % 97.5 %

Model 1

aFF Beta 2.68 4.43 165 4.67E-02 1.77E-02 0.264 9.86E-01 3.13 15.3

aFS Beta 2.78 4.59 165 4.35E-02 1.79E-02 0.270 1.01 3.23 16.1

aSF Beta 2.70 4.40 163 4.06E-02 1.80E-02 0.267 1.00 3.16 15.4

aSS Beta 3.36 5.44 162 5.39E-02 1.94E-02 0.315 1.22 3.98 19.3

bFF Beta 0.697 1.98 284 1.51E-02 1.18E-07 4.36E-03 5.84E-02 0.472 5.77

bFS Beta 0.649 1.85 285 1.43E-02 1.14E-07 3.84E-03 5.21E-02 0.436 5.35

bSF Beta 0.653 1.90 291 1.48E-02 1.11E-07 3.75E-03 5.07E-02 0.424 5.44

bSS Beta 0.120 0.614 514 4.51E-03 1.43E-08 3.75E-04 5.34E-03 4.66E-02 0.957

Model 2

aFF Beta 0.606 9.04E-02 15 5.84E-04 0.447 0.543 0.600 0.663 0.801

aSS Beta 4.53 0.578 13 1.81E-03 3.47 4.13 4.50 4.90 5.74

bFF Beta 1.52 0.212 14 1.12E-03 1.15 1.38 1.51 1.66 1.98

bSS Beta 0.542 5.00E-02 9 1.70E-04 0.449 0.508 0.540 0.575 0.646

Model 3

ar Beta 9.31 1.14 12 9.66E-03 7.23 8.51 9.26 10.0 11.7

aP Beta 0.562 5.24E-02 9 1.83E-04 0.466 0.526 0.560 0.596 0.671

br Beta 5.90 0.768 13 6.55E-03 4.51 5.36 5.86 6.39 7.52

bP Beta 3.54 0.439 12 1.42E-03 2.74 3.23 3.52 3.83 4.46

Model 4

ar Gamma 0.667 7.94E-02 12 4.66E-04 0.525 0.612 0.663 0.718 0.836

as Normal 3.03 0.121 4 2.31E-04 2.79 2.94 3.02 3.11 3.27

br Gamma 0.696 0.165 24 1.17E-03 0.416 0.579 0.682 0.797 1.06

bs Normal 0.361 4.16E-02 12 9.20E-05 0.284E 0.332 0.359 0.388 0.447

CV % coefficient of variation of parameter estimate as a percentage, SEM standard error of the mean adjusted for autocorrelation
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pharmacometrics. Bayesian MCMC methods however are

particularly well suited for extending our hybrid Markov

chain–VM adherence model to the population setting

because these methods enable inclusion of the diverse

distributions, which can be combined as necessary for the

integrated adherence model.

The most challenging aspect of the population modeling

was characterizing the distribution of the two-state Mar-

kov-chain transition matrix. We used a systematic

approach of evaluating four competing approaches varying

in complexity and in the nature of the prior distributions.

We also compared two different parameterizations of the

transition probabilities in Model 3 and 4. Model 4 was

identified as the best model based on the DIC. However,

Model 3, which also contains built-in inter-dependence

across rows of the transition matrix, was inferior to both

Model 4 and 2. We attribute this apparent discrepancy to

distribution characteristics of the Model 3 parameters,

which may not have been modeled adequately by the

available closed form distributions. The beta distribution

was the only closed form distribution available for mod-

eling the two parameters in Model 3 given their limited

domain of support. Our selection of priors implicitly

assumes that a single population generates the underlying

transition matrix. Mixture distributions are necessary if the

underlying adherence patterns exhibit clustering in differ-

ent subgroups of subjects, e.g., in ‘‘adherent’’ and ‘‘non-

adherent’’ subgroups. Bayesian nonparametric approaches,
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Fig. 2 Visual predictive check.

The dashed green lines in a–
h shows the simulations of the

estimated density functions

from the Bayesian population

modeling for the key variables

and parameters of the hybrid

Markov chain–von Mises

model. The red lines show the

empirical density function for

the same variables. The

corresponding histograms are

manually placed in the

background to provide an

approximate visual reference to

the model fit from Model 4 and

the empirical density function.

The simulated and empirical

densities and histograms in

Fig. 1a–d show overall

adherence fraction, pSS, pFS and

PCI, respectively, which are the

key variables and derived

parameters of the two-state

Markov model. The simulated

and empirical densities and

histograms in e and f correspond
to the fraction of overdosing

events and the Poisson rate

parameter for overdosing,

respectively. The simulated and

empirical densities and

histograms in g and h are for

mean and concentration

parameters of the von Mises

distribution for dose timing

deviations. The y-axis scale

should not be used for the

histograms (Color figure online)
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particularly those based on Dirichlet processes, are

emerging as an alternative to Bayesian parametric

approaches in application areas [26, 27] where the number

of mixture components is not known. Mixture distributions

and nonparametric approaches may potentially prove use-

ful for large-scale population-wide adherence datasets from

diverse diseases and across therapeutic classes.

We used an objective operational definition of persis-

tence based on the last successful dosing event during the

observation period. This operational definition does not

penalize for drug holidays, which are modeled using the

Markov chain component of the model. In real life settings,

prolonged periods of non-adherence may occur that make it

difficult to distinguish between persistence and the re-ini-

tiation of the dosing regimen. To address the impact of the

observation period on persistence we used methods of

survival modeling that consider right censoring of data.

Additionally, it was necessary to re-parameterize the

Weibull distribution to facilitate estimation in the Bayesian

framework.

As noted in Methods, the parameterization of Model 4

was motivated by the helix-coil model which is used to

describe DNA melting and protein unfolding in biophysics

and is itself based on the one-dimensional Ising model in

physics. Girard et al. described a multi-state Markov model

coupled with normality assumptions for adherence

modeling [28]. The potential similarities between the

adherence modeling problem and the helix-coil model were

first identified in early work from our group [15]. In the

helix-coil model, the parameter r is interpreted as a mea-

sure of cooperativity. Values of r less than unity indicate

positive cooperativity, whereas values greater than unity

indicate negative cooperativity. One difference between

the biophysical and adherence setting is that the distribu-

tion of r in patient populations contains values that span

both positive and negative cooperativity; negative coop-

erativity generally does not occur frequently in the bio-

physical setting. Another distinction is that the helix-coil

model implicitly assumes an exponential Boltzmann dis-

tribution of polymer chains, whereas our Model 4 incor-

porates the Gamma distribution for r and the lognormal

distribution for s.

We used the DIC, a widely used measure of model

discrimination in Bayesian modeling. The DIC is analo-

gous to the AIC familiar to modeling and pharmacometrics

researchers [29]. Based on the recommendations of Burn-

ham and Anderson, models having AIC values within 1–2

units of the model with lowest AIC merit consideration,

whereas models with AIC values [3 U from the model

with the lowest AIC are considered substantially weaker

and can potentially be ruled out [30]. All of our models

differed by[25 units from each other and from Model 4.

This margin of DIC is generally considered sufficient to

rule out models that are not competitive [24, 31].

We envision potential applications of our modeling

strategy in clinical trial simulations and population PK–PD

modeling. Currently, resampling approaches of MEMS

traces are used to incorporate adherence into modeling.

However, the availability of an integrated Bayesian model

that spans adherence, overdosing and persistence could

substantially enhance these empirically driven methods

because they provide greater control over simulations and

more detailed insights into the underlying factors driving

drug concentration variability.

In conclusion, this manuscript acknowledges Dr. Ger-

hard Levy’s important scientific contributions to PK–PD

and also to our understanding the consequences of inade-

quately addressing medication adherence issues.
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