This workshop has been designed to provide a detailed discussion of issues relevant to the pharmacokinetic / pharmacodynamic (PK/PD) modeling of antibody drugs. Lectures will address primary determinants of antibody pharmacokinetics (PK) and pharmacodynamics (PD), the design and implementation of pre-clinical investigations of antibody PK/PD, and state-of-the-art mathematical models to characterize and predict antibody PK and PD. Special emphasis is placed on discussion of the role of FcRn on the absorption, distribution, and elimination of antibodies, on the mathematical modeling of target-mediated antibody disposition, and on physiologically-based modeling of antibody pharmacokinetics. The workshop content is provided as a combination of formal lectures and informal review sessions.

Subjects that will be presented include:

Determinants of antibody pharmacokinetics and pharmacodynamics: mechanisms of antibody elimination, the role of convection in the kinetics of antibody distribution, the role of FcRn in antibody absorption, distribution, and elimination

Common analytical assays for quantification of antibody in biological samples & implications for PK/PD investigations

Immunogenicity and Antibody PK/PD

Evaluation of biosimilarity of antibody drugs: Application of PK/PD for biosimilarity studies – opportunities and limitations

Interspecies Scaling of Antibody PK

Target-Mediated Antibody Disposition: modeling, implications for interspecies scaling, implications for First-in-Human studies

Modeling of bimolecular antibody-ligand interaction

Physiologically-based pharmacokinetic modeling: Incorporation of FcRn-mediated antibody transport in PBPK models, incorporation of target-mediated disposition, use of PBPK and preclinical data to predict antibody disposition in humans

COURSE DIRECTION

Joseph P. Balthasar, PhD

Dr. Balthasar is Professor of Pharmaceutical Sciences at the University at Buffalo, State University of New York and Director of the Center for Protein Therapeutics. His PK/PD modeling interests and capabilities include the development and preclinical evaluation of anti-toxin immunotherapies, the development and preclinical evaluation of anti-cancer immunotherapies (including immunoconjugate immunotherapies), and the development and preclinical evaluation of novel immunotherapies for humoral autoimmune conditions (immune thrombocytopenia, myasthenia gravis). He serves as a consultant to the NIH and pharmaceutical industry.
DAY 1

08:45-09:00 Introduction to Antibody PK and PD
- Introduction to antibodies (isotypes, polyclonal vs. monoclonal, humanization, etc.)
- Mechanistic determinants of antibody absorption, distribution, and elimination (contrasting with determinants of small-molecule ADME)
- Comments on the mathematical modeling of antibody PK
- Introduction to antibody pharmacodynamics

09:00-10:30 Analytical Assays for Antibodies: Implications for PK/PD Analyses
- Discussion of major types of analytical assays for monoclonal antibodies (ELISA, RIA, LC MS/MS, SPR, “direct” labeling)
- Characterization of antibody binding
- Characterization of antibody concentrations in biological samples
- What is measured? What are the concerns for assay interference?
- Examples / case-studies

10:30-10:45 Break

10:45-11:45 Immunogenicity and Macromolecule PK/PD
- Factors associated with immunogenicity
- Identification of host “anti-drug” antibodies
- Examples / case-studies

11:45-12:15 Use of PK/PD Studies to Support Comparability Assessments of Therapeutic Proteins: An Academic Perspective

12:15-1:00 Lunch

01:00-03:00 Interspecies Scaling of Antibody PK & PD
- General review of interspecies scaling
- Considerations for scaling antibody pharmacokinetics
- Considerations for scaling antibody pharmacodynamics
- Examples / case-studies

02:15-03:30 Mathematical Modeling of Target-Mediated Disposition of Monoclonal Antibodies
- Introduction to TMD of Mab with examples
- Review of mathematical models that have been applied to characterize Mab TMD
- Comparison of model performance; discussion of implications for predicting Mab PK/PD

03:15-04:30 Review Module #1: Design & Analysis of a Preclinical Investigation of Antibody PK
- Study objectives
- Consideration for study design
- Assay considerations
- Initial evaluation of data (Additional studies needed?)
- Initial characterization of ADME (NCA vs. modeling)
- Evaluation of NCA results

03:30-03:45 Break

03:45-05:00 Review Module #3: Prediction of the Influence of Shed Antibody on the Distribution of Mab in Solid Tumors
- Study objectives
- Consideration for study design
- Model development
- Model simulations

04:30-04:45 Break

04:45-05:00 Review Module #4

05:00-05:15 Review of exam questions from UBgraduate courses relating to Mab pharmacokinetics and pharmacodynamics

DAY 2

09:00-10:00 Mathematical Modeling of Bimolecular Antibody-Antigen Interaction
- Review of binding kinetics (Law of Mass Action, equilibrium vs. non-equilibrium binding)
- Mathematical modeling of antibody binding: Examples from antibodies used for immunotoxicotherapy

09:00-10:00 Physiologically-Based PK Modeling of Mab
- Review of PBPK models
- Application of PBPK models applied to Mab
- Discussion of major features of PBPK models for Mab & discussion of associated physiology (convection, restriction coefficients, sites of catabolism, “two-pore formalism”, incorporation of specific binding, incorporation of FcRn)

11:15-12:15 Lunch

12:15-12:30 Application of PK/PD Theory to Guide the Discovery and Development of New Immunotherapeutics

12:30-13:30 Review Module #2: Design & Analysis of a Preclinical Investigation of Antibody PK (Part 2)
- Development of mechanistic mathematical models

13:30-14:30 Review Module #5: Consideration for Study Design, Analysis and Interpretation of PK/PD Results

14:30-15:30 Review Module #6: Case Studies in Pharmacokinetics and Pharmacodynamics

15:30-16:15 Review Module #7: Consideration for Regulatory Aspects of Antibody PK/PD

16:15-16:30 Review Module #8: The Future of Antibody PK/PD

16:30-18:00 Review of exam questions from UBgraduate courses relating to Mab pharmacokinetics and pharmacodynamics

REGISTRATION FORM: ANTIBODY WORKSHOP

Kindly return to: ANTIBODY PK/PD MODELING Workshop, Dept. of Pharmaceutics, School of Pharmacy, University at Buffalo, 519 Hochstetter Hall, Buffalo, NY 14260; phone: 716 645 2842, x. 540; fax: 716 645 3693; e-mail Rita Urben at rrurben@buffalo.edu.